

Morosil (BIONAP / Itália)

Extrato da Original Laranja Moro para o Gerenciamento do Peso

Nome científico: Citrus Sinenses (L.) Osbeck

Dose Usual:

Gerenciamento do peso: 400 mg a 500mg ao dia

Outras aplicações: 200mg a 500mg ao dia

Certificações:

O excesso de calorias ingerido é armazenado nos adipócitos na forma de triacilgliceróis. Os adipócitos também são responsáveis por sintetizar e segregar moléculas biologicamente ativas chamadas de adipocitocinas. Uma alteração na secreção de adipocitocinas, devido à hipertrofia e/ou hiperplasia dos adipócitos, poderia estar relacionada ao início do processo fisiopatológico da obesidade e suas complicações.

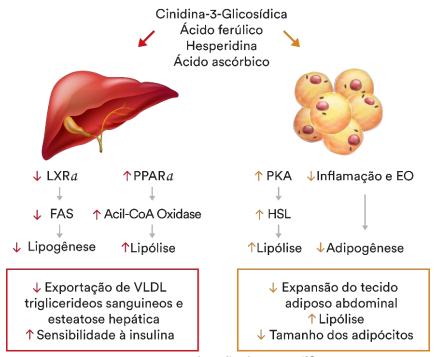
Morosil® é um extrato obtido a partir do suco de laranjas vermelhas Moro (*Citrus Sinenses (L.) Osbeck*), cultivadas exclusivamente na área em torno do vulcão Etna no leste da Sicília, Itália. Devido às condições climáticas e ambientais únicas da região, a laranja Moro se destaca por sua coloração vermelha (pigmento natural), fonte de antocianina, um excelente antioxidante, que geralmente não é encontrado em outras frutas cítricas. Além disso, sabe-se que as laranjas vermelhas também possuem maior teor de vitamina C e compostos fenólicos do que as amarelas.

Os compostos bioativos da laranja Moro são principalmente: antocianinas, flavonoides, ácido ascórbico e ácidos hidroxicinâmicos, que apresentam excelente propriedade antioxidante, auxiliando principalmente na redução da gordura corporal, influenciando na redução do peso e no cuidado de doenças relacionadas.

Compostos ativos Morosil®

Composto Bioativo (CBA)	CBA Prevalente na <i>Moro</i>	Concentração Morosil (%)	
Antocianinas	Cianidina-3- glicosídica (C3G)	0,8-0,9	
Flavonoides	Hesperidina Naringenina		
Ácido Hidroxiciâmicos	Ácido ferúlico		
Acido Ascórbico			
	Efeito Biológico		

Compostos bioativos do Morosil®



O suco da laranja Moro possui destaque em estudos sobre o gerenciamento do peso, o cuidado e prevenção da obesidade, resistência à insulina, esteatose hepática e doenças cardiovasculares, em virtude da sinergia entre diferentes atividades proporcionadas por seus fitoguímicos, atuando principalmente nos adipócitos.

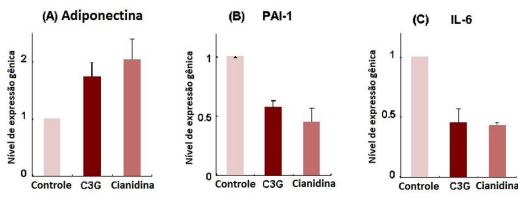
- A hipertrofia dos adipócitos é um mecanismo presente na obesidade que, por gerar hipóxia tecidual, está associada com o desenvolvimento de inflamação e resistência à insulina sistêmica. O suco da laranja Moro auxilia na reversão desse processo, já que a antocianina C3G contribui no controle da expressão da proteína transportadora de ácidos graxos, diretamente envolvida na captação de lipídeos pelos adipócitos, reduzindo sua hipertrofia ².
- A adiponectina é um hormônio responsável por modular diversos processos metabólicos e sua liberação é inversamente proporcional ao tamanho dos adipócitos. A redução do conteúdo lipídico nos adipócitos, devido à ação dos bioativos presentes no suco da laranja Moro, leva ao aumento da secreção de adiponectina, que atua regulando os níveis de triglicérides no músculo e fígado, reduzindo a resistência à insulina ³.
- As laranjas Moro também favorecem a diminuição da atividade da HMG-CoA redutase, enzima fundamental na síntese do colesterol, levando a uma redução do colesterol tecidual e a um consequente aumento na expressão dos receptores de LDL. Ainda, contribuem para a redução da

inflamação e estresse oxidativo (EO), eventos que estão associados com a hipertrofia dos adipócitos e adipogênese ⁴.

Mecanismo de ação do Morosil®

Abreviações: LXRα – liver X receptor; FAS – ácido graxo sintase; PPARα – receptor ativado por proliferador de peroxissoma–α; PKA – proteína quinase A; HSL – hormônio lipase sensível; EO – estresse oxidativo; C3G – cianidina 3 glicosídica; VLDL – lipoproteína de densidade muito baixa.

- O suco de laranja vermelha reduz as concentrações sanguíneas de citocinas, endotoxinas, PCR-US (proteína C-reativa ultra sensível), lipoproteína de baixa densidade (LDL), bem como melhora da pressão arterial, o perfil de coagulação e os níveis séricos de vitamina C e ácido fólico ⁵.
- Além disso, os compostos bioativos do extrato da laranja Moro podem contribuir para a redução da esteatose hepática por aumentar a expressão de genes lipolíticos e diminuir a expressão de genes lipogênicos no fígado, como o LXR e a FAS, envolvidos na síntese de triacilgliceróis, além de aumentarem a oxidação de gorduras via mecanismos dependentes de PPAR. O resultado dessa modulação na expressão gênica é uma melhora significativa do acúmulo de gordura no fígado e uma redução nos níveis sanguíneos de triacilgliceróis ⁴.


Acredita-se que grande parte desses efeitos da laranja vermelha na obesidade sejam mediados pelas antocianinas (especialmente a C3G) e seus metabólitos, além dos demais compostos presentes na laranja Moro. Todos estes fatores fazem com que o **Morosil**® colabore efetivamente no cuidado da obesidade e suas complicações.

Regulação de adipocitocinas relacionadas com o desenvolvimento de diabetes Mellitus e obesidade pela antocianina C3G ⁶

Foi avaliada a expressão gênica de diversos fatores relacionados com o metabolismo lipídico e a regulação das adipocitocinas em células adiposas humanas. Neste estudo, pré adipócitos humanos foram cultivados em meio de cultura até se diferenciarem em adipócitos. Treze dias após a diferenciação, os adipócitos foram tratadas com antocianina C3G ou cianidina, como controle positivo, por 24h. O nível de expressão gênica das adipocitocinas foi avaliado pela técnica de microarranjos de RNA.

Avaliação da regulação de adipocitocinas

Resultados: A antocianina C3G promoveu aumento da expressão de adiponectina (importante na melhora da sensibilidade à insulina), além de reduzir expressão gênica de PAI-1 (inibidor do ativador de plasminogênio) e IL-6, que estão diretamente relacionados com o desenvolvimento de diabetes e obesidade.

Efeito do Morosil[®] na perda de peso em indivíduos com sobrepeso⁷

O estudo avaliou indivíduos com excesso de peso, com idades entre 20 e 65 anos, que receberam 400mg de **Morosil®** ou placebo (maltodextrina) durante 6 meses após o café da manhã. Esta suplementação foi associada com dieta e caminhada de 30 minutos, 3 vezes por semana.

Foram analisadas medidas antropométricas de peso, índice de massa corporal (IMC), circunferência do quadril e da cintura, além da medida de massa muscular magra, gordura abdominal total, gordura visceral, gordura subcutânea e gordura andróide versus ginoide através da Densitometria de Composição Corporal. Amostras de plasma foram utilizadas para interpretar biomarcadores metabólicos plasmáticos incluindo

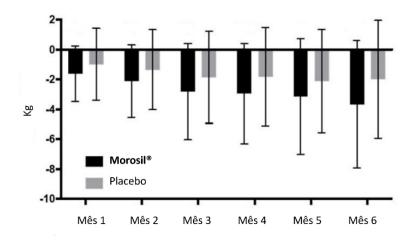
glicemia de jejum, insulina, perfil lipídico e função hepática. Os hormônios da fome leptina e grelina foram analisadas por ELISA.

RESULTADOS:

	MOROSIL®			PLACEBO		
	Linha de Base	Mês 3	Mês 6	Linha de Base	Mês 3	Mês 6
Circunferência da Cintura (cm)	101.1 ± 9.9	98.5 ± 10.5 #	97.2 ± 10.7 **	103.4 ± 11.0	101.3 ± 11.4 *	101.7 ± 11.7 *
Circunferência do quadril (cm)	113.4 ± 6.9	111.0 ± 7.5 #	110.1 ± 7.5 **	115.6 ± 7.2	113.6 ± 6.7 #	113.5 ± 7.2 #
Peso (kg)	88.4 ± 11.2	85.5 ± 11.5 #	84.7 ± 11.7 **	90.8 ± 13.8	89.0 ± 14.1 *	88.8 ± 14.5 #
Perda de Peso (kg)	-3.2 ± 3.7 *	$-4.2 \pm 5.0 **$		-2.1 ± 3.3	-2.2 ± 4.2 *	
IMC (kg/m²)	29.5 ± 1.6	28.6 ± 2.0 #	28.3 ± 2.2 *#	29.4 ± 1.4	28.9 ± 1.7 *	28.8 ± 1.9 #
Massa magra (kg)	54.0 ± 11.3	52.5 ± 10.1	52.4 ± 10.2 *	56.1 ± 13.0	55.4 ± 12.8	55.6 ± 13.2 #
Massa gorda (kg)	32.1 ± 7.2	30.6 ± 6.4 *#	29.7 ± 6.7 *#	33.1 ± 7.5	31.8 ± 8.0 #	31.2 ± 8.2 #
Massa gorda braço (kg)	3.9 ± 1.1	3.7 ± 0.9	3.6 ± 0.9 *	3.7 ± 1.0	3.6 ± 1.0	3.5 ± 1.0 *
Massa gorda perna (kg)	11.9 ± 3.3	11.4 ± 3.2	11.4 ± 3.8 *	12.2 ± 3.8	11.5 ± 4.0	11.3 ± 3.6 *
Massa gorda abdômen (kg)	15.9 ± 3.3	14.6 ± 3.5 **	14.1 ± 3.5 **	16.3 ± 4.1	15.6 ± 4.4 #	$15.3\pm4.4{}^{*}$
Gordura Androide (kg)	3.6 ± 1.8	2.7 ± 1.0 *	2.6 ± 1.0 *	4.0 ± 2.1	3.1 ± 1.4	3.0 ± 1.4 *
Gordura Ginoide (kg)	7.0 ± 3.8	5.2 ± 1.5 *	5.1 ± 1.5 *	7.7 ± 4.0	5.9 ± 2.8 *	5.9 ± 2.8 *
Gordura Visceral (kg)	632.9 ± 223.5	588.6 ± 245.3 #	554.2 ± 232.4 *#	632.8 ± 249.6	581.5 ± 256.6 *	575.8 ± 254.9 *
Área de Gordura Visceral (cm²)	131.4 ± 46.4	122.0 ± 51.0	115.6 ± 47.4 *	131.5 ± 52.0	120.1 ± 53.1	118.6 ± 52.6 *
Gordura Subcutânea (kg)	15.2 ± 3.1	14.0 ± 3.4 #	13.5 ± 3.4 *#	15.7 ± 3.9	15.0 ± 4.2 #	14.7 ± 4.3 *

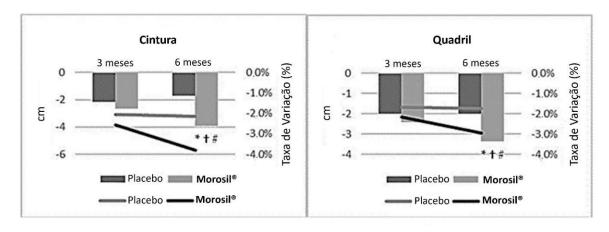
Dados antropométricos para todos os participantes do estudo

Observaram-se resultados significativos de perda de Massa gorda, Gordura abdominal, Gordura ginoide, Gordura androide, Gordura visceral e Gordura subcutânea.


	MOROSIL®			PLACEBO			
	Linha de Base	Mês 3	Mês 6	Linha de Base	Mês 3	Mês 6	
ALT (U/L)	25.9 ± 15.6	20.9 ± 7.9	23.3 ± 9.1	25.9 ± 11.5	23.6 ± 10.6	24.7 ± 10.0	
AST (U/L)	23.7 ± 7.2	23.4 ± 8.2	25.8 ± 9.1	22.2 ± 9.8	22.3 ± 8.9	23.1 ± 10.4	
GGT (U/L)	29.7 ± 15.3	26.3 ± 14.7	24.3 ± 13.9	36.4 ± 25.7	33.1 ± 28.2	32.7 ± 28.3	
TBIL (umol/L)	11.9 ± 4.5	11.9 ± 4.7	12.3 ± 5.6	11.7 ± 5.0	11.1 ± 4.8	11.0 ± 3.9	
Colesterol (umol/L)	5.8 ± 1.1	5.7 ± 1.1	5.7 ± 1.2	5.8 ± 1.2	5.6 ± 1.1	5.7 ± 1.1	
HDL (mmol/L)	1.8 ± 0.4	1.8 ± 0.5	1.9 ± 0.6	1.7 ± 0.5	1.6 ± 0.5	1.7 ± 0.4	
LDL (pg/mL)	3.6 ± 0.9	3.5 ± 0.9	3.5 ± 0.9	3.7 ± 1.0	3.5 ± 1.0	3.5 ± 0.8	
TRI (mmol/L)	1.0 ± 0.4	1.0 ± 0.5	1.1 ± 0.7	1.4 ± 0.7	1.3 ± 0.7	1.3 ± 0.7	
Glicose (mmol/L)	5.6 ± 1.0	5.6 ± 0.8	5.5 ± 0.9	5.6 ± 1.0	5.6 ± 0.8	5.7 ± 0.8	
Insulina (mU/L)	12.2 ± 8.1	13.0 ± 9.9	11.4 ± 7.9	11.2 ± 6.6	12.0 ± 7.8	12.7 ± 8.4	
Creatina (umol/L)	92.4 ± 11.8	96.4 ± 21.8	94.0 ± 13.3	90.9 ± 18.1	94.2 ± 15.4	93.2 ± 14.6	
Grelina (ng/mL)	0.41 ± 0.32	0.47 ± 0.51	0.49 ± 0.47	0.40 ± 0.36	0.39 ± 0.34	0.40 ± 0.38	
Leptina (ng/mL)	5.71 ± 5.13	5.10 ± 5.72	5.51 ±7.11	4.77 ± 4.10	4.06 ± 3.50	3.9 ± 3.64	
Adiponectina (ug/mL	6.26 ± 3.77	6.43 ± 4.11	6.35 ± 3.62	5.22 ± 3.59	5.21 ± 3.50	5.54 ± 3.83	

Resultados para o grupo ativo e placebo para todos os participantes

Abreviações: ALT = Alanina transaminase, AST = Aspartato aminotransferase, GGT = Gama-glutamil transferase TBIL = bilirrubina total, GLU = glicose, TRI = triglicerídeos, HDL = lipoproteínas de alta densidade, LDL = lipoproteínas de baixa densidade.

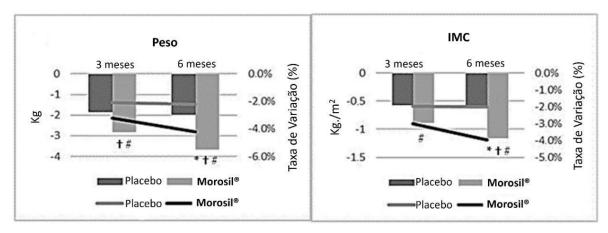

Peso Corporal

Alteração no peso corporal ao longo de 6 meses

Os participantes que utilizaram 400mg de **Morosil®** tiveram uma perda média geral de peso de 4,2% do peso corporal inicial no mês 6, enquanto que o grupo placebo teve uma perda de apenas 2,2%. Além disso, 36% dos voluntários do grupo que ingeriu **Morosil®**, tiveram uma perda de peso de mais de 5% contra 22,5% dos participantes do grupo placebo. A perda de peso (kg) teve uma diferença significativa entre os grupos nos meses 4 e 6.

Circunferência do Quadril e Cintura

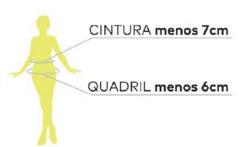
Mudança na circunferência da cintura e quadril (cm) no mês 3 e 6


Morosil[®] reduziu a circunferência da cintura em 3,9 cm e quadril em 3,4 cm após 6 meses de suplementação, enquanto que o grupo placebo reduziu em apenas 1,7 cm e 2,0 cm, respectivamente.

Hormônios de saciedade

Não houve diferença significativa na grelina, leptina ou adiponectina entre os grupos em 3 ou 6 meses.

Índice de Massa Corporal (IMC)

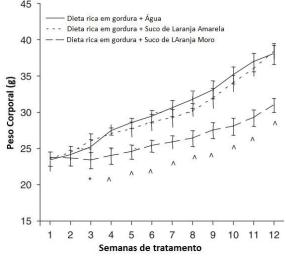

Mudança no peso corporal e IMC no mês 3 e 6

Os indivíduos suplementados com **Morosil®** apresentaram um IMC médio de 29,5 (Intervalo 25-33 kg/m²). Além disso, o grupo tratado teve uma redução significativa na massa gorda, apoiado pelos dados constantes de massa magra, redução na quantidade de gordura abdominal, visceral e subcutânea.

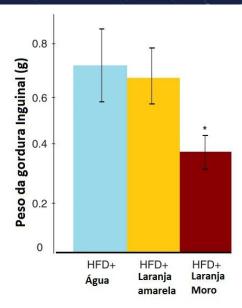
Avaliação do efeito de Morosil® na redução de medidas 8

Estudo realizado para avaliar o efeito da suplementação de **Morosil**® em voluntários saudáveis com sobrepeso, durante 12 semanas, em comparação com um grupo placebo na redução de medidas. O estudo clínico avaliou 30 voluntários com IMC entre 25 e 35 kg/m² que foram suplementados com 400mg ao dia de **Morosil**® ou placebo. Foram realizadas medidas da circunferência de quadril e cintura, avaliadas no início do tratamento (T0) e após 12 semanas (T4).

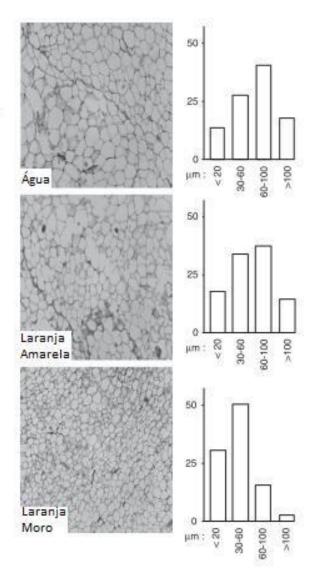
	Tempo	Placebo	Morosil®
Circunferência	ТО	96,31	96,05
da cintura (cm)	T4	95,51	88,97
	Variação	-0,8	-7,08
Circunferência do quadril (cm)	ТО	109,42	110,07
	T4	108,73	104,1
	Variação	-0,69	-5,97


Mudanças nos parâmetros físicos

Resultados: A suplementação dos voluntários com **Morosil®** promoveu uma redução significativa nas medidas das circunferências da cintura e do quadril quando comparado com o placebo, sendo uma redução de até 7 centímetros de cintura e 6 centímetros de quadril ao final do estudo.

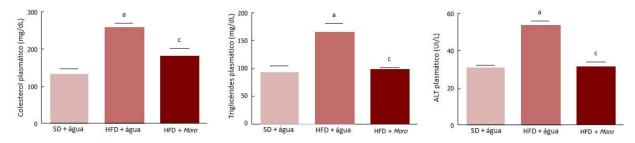

Efeito do suco da laranja Moro no gerenciamento do peso 9

Neste estudo, ratos foram alimentados com uma média de 4,0 mL de água, suco de laranja amarela ou suco de laranja Moro diariamente, e receberam uma dieta rica em gordura contendo aproximadamente 5,24 kcal/g. Durante 12 semanas, o peso corporal dos ratos foi medido e, na última semana, a massa gorda inguinal, interescapular e abdominal foram avaliadas. Neste mesmo estudo também foi analisado o tecido adiposo dos ratos em corte histológico, a fim de verificar o efeito do suco de laranja Moro na redução do tamanho dos adipócitos.

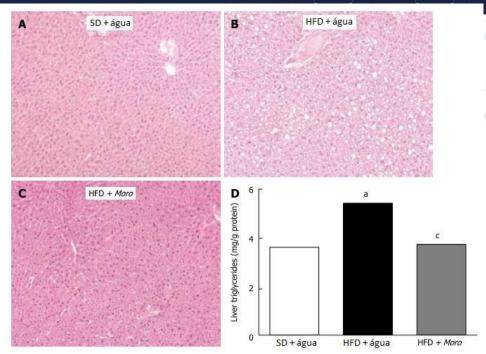


Porcentagem de redução do peso corporal

Redução de gordura abdominal/inguinal – (HFD=Dieta rica em gordura)


Avaliação do tamanho dos adipócitos em ratos

Resultados: Avaliando o peso corporal e a gordura abdominal, os ratos que consumiram o suco de laranja Moro apresentaram um ganho de massa corporal muito menor que os ratos alimentados com água ou com suco de laranja amarela. Além disso, os ratos alimentados com o suco de laranja Moro apresentaram uma redução de até 50% da gordura abdominal e apresentaram redução significativa do tamanho dos adipócitos.


Efeito do suco de laranja Moro na esteatose hepática ⁴

No presente estudo, diversos fatores relacionados à esteatose hepática foram avaliados a fim de se observar a ação do suco da laranja Moro na modulação desses fatores. Três grupos contendo 6 ratos foram determinados, sendo o primeiro um grupo controle alimentado com uma dieta padrão e água (SD + água), um segundo grupo alimentado com uma dieta rica em gorduras e água (HFD + água) e um terceiro grupo alimentado com uma dieta rica em gorduras e suco de laranja Moro (HFD + Moro), durante 12 semanas. O peso corporal foi monitorado semanalmente. Após este período, amostras do sangue e do fígado foram analisadas.

Níveis plasmáticos de colesterol, triglicérides e ALT em ratos recebendo dieta padrão + água (SD + água), dieta rica em gorduras + água (HFD + água) e dieta rica em gorduras + suco de laranja Moro (HFD + Moro)

Corte histológico do fígado dos ratos submetidos à dieta padrão + água (A), dieta rica em gordura + água (B) e dieta rica em gordura + Moro (C)

Resultados: Nas amostras de sangue pode-se observar que o suco da laranja Moro atuou reduzindo os níveis plasmáticos de triglicérides e colesterol. Além disso, os ratos que receberam o suco de laranja Moro apresentaram níveis plasmáticos de ALT semelhantes aos ratos controle, mostrando sua eficácia no controle da esteatose hepática.

Através do corte histológico do fígado, pode-se observar também que os ratos submetidos a uma dieta rica em gordura e suco de laranja Moro apresentaram o tecido hepático íntegro, indicando que o suco de laranja Moro é capaz de impedir a lipogênese nas células hepáticas e prevenir o dano celular.

- Coadjuvante no gerenciamento do peso;
- Modula o metabolismo dos adipócitos e reduz a adipogênese, além de estimular a lipólise;
- Colabora na redução da medida da circunferência abdominal e do quadril;
- Favorece a diminuição da massa gorda, da gordura visceral e do IMC;
- Colabora na redução da Massa gorda e das gorduras abdominal, ginoide, androide, visceral e subcutânea;
- Potente ação antioxidante;
- Contribui para o aumento da biogênese mitocondrial⁷;
- Auxilia no aumento da sensibilidade à insulina, por meio do aumento da síntese de adiponectina;
- Coadjuvante no cuidado da esteatose hepática por meio da modulação da expressão de LXR, FAS e PPAR.

Morosil[®] é indicado para auxiliar no gerenciamento do peso, na redução de medidas, na detoxificação e controle do estresse oxidativo e da inflamação, além de contribuir na sensibilidade à insulina e atuar como coadjuvante no cuidado da esteatose hepática, sendo um importante aliado para o cuidado e prevenção da obesidade.

Morosil[®] também pode auxiliar na manutenção da longevidade, através do aumento da biogênese mitocondrial⁷.

- 1 Literatura do fabricante Bionap (Itália).
- 2 TSUDA, T et al. Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem Pharmacol. 2006 Apr 14;71(8):1184-97. DOI: 10.1016/j.bcp.2005.12.042.
- 3 GUO, H et al. Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-alpha-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem Pharmacol. 2008 Mar 15;75(6):1393-401. DOI: 10.1016/j.bcp.2007.11.016.
- 4 SALAMONE, F et al. Moro orange juice prevents fatty liver in mice. World J Gastroenterol, August 7, 2012. DOI: 10.3748/wjg.v18.i29.3862.
- 5 LIMA, L. P. BARBOSA, A. P. A review of the lipolytic effects and the reduction of abdominal fat from bioactive compounds and moro orange extracts. Heliyon 7 (2021) e07695.

DOI: 10.1016/j.heliyon.2021.e0769.

- 6 TSUDA, T. Regulation of adipocyte function by anthocyanins; possibility of Preventing the Metabolic Syndrome. Journal of Agricultural and Food Chemistry, 56:642-646, 2008. DOI: 10.1021/jf073113b. 7 BRISKEY, David; MALFA, Giuseppe Antonio; RAO, Amanda. Effectiveness of Moro Blood Orange Citrus sinensis Osbeck (Rutaceae) Standardized Extract on Weight Loss in Overweight but Otherwise Healthy Men and Women.
- A CARDILE, V. GRAZIANO, A. C. VENDITTI, A. Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. Nat Prod Res. 2015;29(23):2256-60. DOI: 10.1080/14786419.2014.1000897.
- 9 TITTA, L et al. Blood orange juice inhibits fat accumulation in mice. Int J Obes (Lond). 2009 Mar;34(3):578-88. DOI: 10.1038/ijo.2009.266.

Informativo exclusiva para profissionais da Saúde

